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Abstract. In a class of SUSY SO(10) with SU(2)L×SU(2)R×U(1)B−L×SU(3)C (g2L �= g2R) intermediate
gauge symmetry, we observe that the prediction on the unification mass (MU) is unaffected by Planck-scale-
induced gravitational and intermediate-scale threshold effects, although the intermediate scale (MI) itself is
subject to such corrections. In particular, without invoking the presence of additional lighter scalar degrees
of freedom but including plausible and reasonable threshold effects, we find that interesting solutions for
neutrino physics corresponding to MI � 1010–1013 GeV and MU � (5–6) × 1017 GeV are permitted in the
minimal models. The possibilities of low-mass right-handed gauge bosons corresponding to MI � 1–10 TeV
consistent with the CERN-LEP data are pointed out in a number of models in which threshold effects are
included using effective mass parameters.

1 Introduction

Supersymmetric grand unified theories (GUTs) have been
the subject of considerable attention over the past two
decades [1–4]. While non-SUSY SU(5) fails to unify the
gauge couplings of the standard model, SU(2)L×U(1)Y ×
SU(3)C(≡ G213), the SUSY SU(5) and single step break-
ing of almost all SUSY GUTs exhibit remarkable unifica-
tion of gauge and Yukawa couplings at MU � 1016 GeV
consistent with the recent CERN-LEP measurements.
Compared to other GUTs, SO(10) has several attractive
features. The fermions contained in the spinorial repre-
sentation 16 ⊂ SO(10) have just one extra member per
generation which is the right-handed neutrino needed to
generate light Majorana neutrino masses over a wide range
of values through the see-saw mechanism [5]. It explains
why there is parity violation at low energies starting from
parity conservation at the GUT scale [6,7]. It is the mini-
mal left–right symmetric GUT with natural quark–lepton
unification and having SU(2)L × SU(2)R × SU(4)C [7] as
its maximal subgroup. It has the potentiality to guarantee
R-parity conservation in the Lagrangian.

With MU � MN � 1016 GeV, where MN is the de-
generate right-handed Majorana neutrino mass, the grand
desert model through the see-saw mechanism predicts
much smaller values of light left-handed Majorana neu-
trino masses than those needed for understanding neutri-
nos as a hot dark matter (HDM) candidate along with
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experimental indications on atmospheric neutrino oscilla-
tions and neutrinoless double β decay [8,9], unless sub-
stantially lower values of MN are obtained by a judi-
cious dialing of the Yukawa coupling of the right-handed
Majorana neutrino, or via non-renormalizable operators.
However, in such cases, one of the most attractive fea-
tures like b–τ Yukawa unification for smaller values of
tanβ has to be sacrificed [10,11]. On the other hand,
SUSY SO(10) with an intermediate gauge symmetry like
SU(2)L × SU(2)R × U(1)B−L × SU(3)C(≡ G2213) [12–16]
or SU(2)L×SU(2)R×SU(4)C(≡ G224) [17–20], while pro-
viding a more natural value for MN , substantially lower
than the GUT scale, has the potentialities to account
for the b–τ Yukawa unification at the intermediate scale
MI � 109–1013 GeV. In this context it has been demon-
strated that the desirable values of the G2213-breaking
scale with MI � 109–1013 are possible provided that a
number of scalar components of full SO(10) Higgs rep-
resentations are light with masses near the intermediate
scale [13,14].

Gravitational corrections due to higher-dimensional
operators [21,23] and threshold effects due to superheavy
particles have been shown to influence the GUT predic-
tions significantly [17,23–25]. Since neither the superheavy
masses contributing to threshold effects near the GUT
scale, nor the coefficients of the higher-dimensional op-
erators contributing to gravitational corrections are de-
termined by the grand unified theories, these corrections
add to the uncertainties and inaccuracies of the model
predictions. In order to remove such limitations of the
GUTs, it is important to search for gauge symmetries and
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possible representations for which some of the uncertain-
ties could be absent. For example, it has been demon-
strated through theorems that in all GUTs with SU(2)L×
SU(2)R × SU(4)C × P (≡ G224P , g2L = g2R) intermediate
symmetry, the GUT-threshold and all gravitational cor-
rections on sin2 θW(MZ) and the intermediate scale are
absent [18,19]. The presence of the G224P intermediate
gauge symmetry has been found to be essential for these
cancellations.

The purpose of this paper is two-fold. For the first
time, we demonstrate certain precise results in a class of
GUTs with G2213(g2L �= g2R) intermediate gauge sym-
metry with D-parity broken at the GUT scale [26]. In
particular we find that in SO(10) the dominant effect due
to the five-dimensional operator is absent on MU lead-
ing to the absence of such gravitational corrections on
the proton lifetime for p → e+π0. The threshold effects
caused by the spreading of masses around the intermediate
scale are also found to be absent on MU. Secondly, while
exploring uncertainties in the intermediate-scale predic-
tions in SUSY SO(10), we show, for the first time, that
the G2213 intermediate symmetry is allowed to survive
down to MI � 1010–1013 GeV by threshold and gravi-
tational corrections. We have investigated the impact of
threshold effects in SUSY SO(10) models with one pair of
126 ⊕ 126 and one or two pairs of 16 ⊕ 16 and find that
even MI � 10 TeV is allowed, consistent with the CERN-
LEP measurements [27], provided that the effective mass
parameters at the intermediate or GUT thresholds are a
few times heavier or lighter than the corresponding scales.

This paper is organized in the following manner. In
Sect. 2 we discuss the analytic formulas for mass scales in-
cluding threshold and gravitational corrections. In Sect. 3
we derive vanishing corrections due to the five-dimensional
operator on the GUT scale and estimate gravitational cor-
rections on the intermediate scale. In Sect. 4 we discuss the
threshold effects and their impact on MU and MI. The re-
sults are summarized with conclusions in Sect. 5.

2 Analytic formulas for mass scales

We consider the following symmetry breaking pattern and
derive the analytic formulas for the unification mass MU
and the intermediate scale MI including one-loop, two-
loop, gravitational and threshold corrections. We have

SO(10) × SUSY
210−→
MU

G2213 × SUSY

S−→
MI

G213 × SUSY
10−→

MZ

U(1)em × SU(3)C ,

where the multiplet S is a component of the SO(10) rep-
resentations 16 ⊕ 16 or 126 ⊕ 126 as the case may be. The
renormalization group equations in the presence of the two
gauge symmetries G213 and G2213 below the GUT scale
can be written as

1
αi(MZ)

=
1

αi(MI)
+

ai

2π
ln

MI

MZ
+ θi − ∆i,

i = 1Y, 2L, 3C; (1)

1
αi(MI)

=
1

αi(MU)
+

a′
i

2π
ln

MU

MI
+ θ′

i − ∆′
i − ∆NRO

i ,

i = 2L, 2R, BL, 3C. (2)

where the second term in the R.H.S. of (1) and (2) rep-
resents one-loop contributions and the third term of both
equations are the two-loop terms [28],

θi =
1
4π

∑
j

Bij ln
αj(MI)
αj(MZ)

,

θ′
i =

1
4π

∑
j

B′
ij ln

αj(MU)
αj(MI)

, (3)

Bij =
bij

aj
, B′

ij =
b′
ij

a′
j

. (4)

While the functions ∆i include threshold effects at MZ

and MI,
∆i = ∆

(Z)
i + ∆

(I)
i ,

the ∆′
i include threshold effects at MU. The expressions

for ∆i and ∆′
i are given in Sect. 5. The term ∆NRO

i in (2)
contains higher-dimensional-operator effects which modify
the boundary condition at µ = MU as follows:

α2L(MU)(1 + ε2L) = α2R(MU)(1 + ε2R)
= αBL(MU)(1 + εBL)
= α3C(MU)(1 + ε3C)
= αG, (5)

leading to

∆NRO
i = − εi

αG
, i = 2L, 2R, BL, 3C, (6)

where αG is the GUT fine-structure constant. Considering
the boundary condition (5) along with (1), (2) and (6) we
obtain the following analytic formulas for the mass scales:

ln
MI

MZ
=

1
(AB′ − A′B)

[
(ALS − A′Lθ) + (A′J2 − AK2)

− 2π

αG
(Aε′′ − A′ε′) + (A′J∆ − AK∆)

]
, (7)

ln
MU

MZ
=

1
(AB′ − A′B)

[
(B′Lθ − BLS) + (BK2 − B′J2)

− 2π

αG
(B′ε′ − Bε′′) + (BK∆ − B′J∆)

]
, (8)

where

LS =
2π

α(MZ)

(
1 − 8

3
α(MZ)
αS(MZ)

)
,

Lθ =
2π

α(MZ)

(
1 − 8

3
sin2 θW(MZ)

)
,

A = a′
2R +

2
3
a′

BL − 5
3
a′
2L,

B =
5
3
(aY − a2L) −

(
a′
2R +

2
3
a′

BL − 5
3
a′
2L

)
,
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A′ =
(

a′
2R +

2
3
a′

BL + a′
2L − 8

3
a′
3C

)
,

B′ =
5
3
aY + a2L − 8

3
a3C

−
(

a′
2R +

2
3
a′

BL + a′
2L − 8

3
a′
3C

)
,

J2 = 2π

[
θ′
2R +

2
3
θ′

BL − 5
3
θ′
2L +

5
3
(θY − θ2L)

]
,

K2 = 2π

[
θ′
2R +

2
3
θ′

BL + θ′
2L − 8

3
θ′
3C

+
5
3
θY + θ2L − 8

3
θ3C

]
,

ε′ = ε2R +
2
3
εBL − 5

3
ε2L,

ε′′ = ε2L + ε2R +
2
3
εBL − 8

3
ε3C ,

J∆ = −2π

[
∆′

2R +
2
3
∆′

BL − 5
3
∆′

2L +
5
3
(∆Y − ∆2L)

]
,

K∆ = −2π

[
∆′

2R +
2
3
∆′

BL + ∆′
2L − 8

3
∆′

3C

+
5
3
∆Y + ∆2L − 8

3
∆3C

]
. (9)

In the R.H.S. of (7) and (8) the first, second, third and
the fourth terms are one-loop, two-loop, gravitational and
threshold contributions, respectively. The one-loop and
the two-loop beta-function coefficients below the interme-
diate scale (MI) are given by [22,28],


aY

a2L

a3C


 =




33
5
1

−3


 ,

bij =




199
25

27
5

88
5

9
5 25 24
11
5 9 14


 , i, j = 1Y, 2L, 3C. (10)

Above the intermediate scale, the one-loop and two-loop
beta-function coefficients are


a′
2L

a′
2R

a′
BL

a′
3C


 =




n10

n10 + n16 + 4n126

6 + 3
2n16 + 9n126

−3


 ,

b′
ij =




18 + 7n10 3n10

3n10 18 + 7n10 + 7n16 + 48n126

9 9 + 9
2n16 + 72n126

9 9

3 24
3 + 3

2n16 + 24n126 24
7 + 9

4n16 + 54n126 8
1 14


 ,

i, j = 2L, 2R, BL, 3C. (11)

Including one- and two-loop corrections, we consider a va-
riety of models taking the lighter multiplet to be

S = pn126 + qn16,

where p and q are integers. Here n126 = 1 or n16 = 1 im-
ply that the components ∆R(1, 3,−1, 1)+∆R(1, 3, 1, 1) ⊂
126 ⊕ 126 or χR(1, 2, 1/2, 1) + χR(1, 2,−1/2, 1) ⊂ 16 ⊕ 16
of SO(10) have masses close to MI. Here a minimal model
is defined as one with n126 = 1 or n16 = 1 where only one
set of 126⊕126 or 16⊕16 is used for G2213 breaking. In ad-
dition the GUT scale symmetry breaking is carried out by
only one representation like 210 or 45 which are needed
for decoupling the parity and SU(2)R-breakings. There
are non-minimal models in the literature as in [13,14] and
in [12], the latter having n16 = 3. It may be noted that the
spontaneous breaking of SU(2)R×U(1)B−L gauge symme-
try by 126 guarantees automatic conservation of R-parity,
whereas the use of 16 instead of 126 leads to R-parity
violation. In the latter case it is necessary to impose ad-
ditional discrete symmetries to maintain the stability of
the proton. We use the following input parameters for our
analysis [27]:

α−1(MZ) = 128.9 ± 0.09, α3C = 0.119 ± 0.004,

sin2 θ(MZ) = 0.23152 ± 0.00032, MZ = 91.187 GeV. (12)

Our solutions including only one-loop and two-loop con-
tributions in different models are shown in Table 1. For
example, if n16 = 1 and n126 = 0 the two-loop values are
MI = 1016.9 GeV and MU = 1016.1 GeV. It is clear from
Table 1 that up to two-loop level the models do not allow
MI = 1015 GeV and in some cases MI is even greater than
MU which are forbidden. Also it is to be noted that MU
for all models attains a constant value of 1016.5 GeV. This
phenomenon with the occurrence of MI � MU has led one
to invoke the existence of lighter scalar degrees of freedom
in order to bring down the value of the intermediate scale
with MI � MU [13,14].

3 Gravitational corrections on the mass scales

The mechanism of the decoupling of parity and SU(2)R-
breakings is implemented in SO(10) by using the Higgs
representation 210 or 45 for the symmetry breaking at the
GUT scale. Out of these two, the representation 45 does
not contribute to the gravitational corrections through
the five-dimensional operator since Tr(FµνΦ(45)F

µν) van-
ishes identically. Thus, confining oureselves to the minimal
model and using 210 for the SO(10) symmetry breaking
at the GUT scale, we demonstrate in this section how the
prediction on the unification mass has a vanishing correc-
tion due to the five-dimensional operator. We also show
how the gravitational effect lowers the intermediate scale
by at most two orders of magnitude from the SUSY GUT
scale.
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Table 1. Mass scales and coefficients for different SUSY SO(10) models including one-loop and two-loop contributions. Also
shown are the values of MI including the five-dimensional operator effect while MU remains unaffected

n16 n126 A B A′ B′ One-loop One-loop Two-loop Two-loop Five-dimensional operator MI

MI (GeV) MU (GeV) MI (GeV) MU (GeV) η (GeV)

1 0 16
3 4 16 4 1015.96 1016.5 1016.9 1016.11 8 1015.9

0 1 40
3 −4 24 −4 1017.00 1016.5 1015.2 1016.11 −8 1014.3

2 0 22
3 2 18 2 1015.44 1016.5 1017.6 1016.12 8 1015.8

0 2 70
3 −14 34 −14 1016.68 1016.5 1015.92 1016.11 −8 1015.6

1 1 46
3 −6 26 −6 1016.83 1016.5 1015.5 1016.09 −8 1014.9

2 1 52
3 −8 28 −8 1016.74 1016.5 1015.69 1016.12 −8 1015.2

1 2 76
3 −16 36 −16 1016.61 1016.5 1015.9 1016.12 −8 1015.6

0 3 100
3 −24 44 −24 1016.57 1016.5 1016.9 1015.90 −8 1015.8

3 0 28
3 0 20 0 – 1016.5 – – – –

3.1 Vanishing gravitational corrections
on the unification scale

The super-Higgs representation 210 contains the singlet
ξ(1, 1, 1) under SU(2)L × SU(2)R × SU(4)C which has
been noted to be odd under D symmetry that acts like
the left–right discrete symmetry (≡ Parity) [26]. But the
neutral component in χ(1, 1, 15) of 210 is even under the
same D symmetry. SO(10) can be broken to G2213 without
left–right discrete symmetry by assigning the vacuum ex-
pectation value 〈ξ(1, 1, 1)〉 = 〈χ0(1, 1, 15)〉 � MU. In this
case it has been shown in [25] that the non-renormalizable
Lagrangian containing the five-dimensional operator

− η

2MPl
Tr (FµνΦ210F

µν) (13)

yields, via (5) and (9),

ε2R = −ε2L = −ε3C =
1
2
εBL = ε,

ε =
η

16
MU

MPl

[
3

2παG

] 1
2

,

ε′′ = ε2L + ε2R +
2
3
εBL − 8

3
ε3C = 4ε,

ε′ = ε2R +
2
3
εBL − 5

3
ε2L = 4ε, (14)

where αG = 1
24.3 . It is important to note that ε′ = ε′′

identically which has a strong bearing on the prediction of
the GUT scale. From (7) and (8) we have the gravitational
corrections due to the five-dimensional operator,(

ln
MI

MZ

)
NRO

=
2π(A′ε′ − Aε′′)
αG(AB′ − A′B)

, (15)
(

ln
MU

MZ

)
NRO

=
2π(Bε′′ − B′ε′)
αG(AB′ − A′B)

. (16)

Now we demonstrate the vanishing gravitational correc-
tions to the unification mass in the following manner. In

all models with decoupled parity and SU(2)R-breakings
where there are no additional SU(2)L- or SU(3)C-mul-
tiplets below the GUT scale, except the SM-Higgs dou-
blets near MZ and ∆R ⊕ ∆R or χR ⊕ χR near MI as the
case may be,

a2L = a′
2L,

a3C = a′
3C . (17)

Using (17) in (9), we obtain

B = B′ =
5
3
aY − 2

3
a′

BL − a′
2R,

A = a′
2R +

2
3
a′

BL − 5
3
a′
2L,

A′ = a′
2R +

2
3
a′

BL + a′
2L − 8

3
a′
3C . (18)

Equations (15) and (16) then yield, with the help of (14)
and (18),

(
ln

MI

MZ

)
=

2π(A′ε′ − Aε′′)
αGB(A − A′)

= − 8πε

BαG
,

(
ln

MU

MZ

)
=

2π(ε′′ − ε′)
αG(A − A′)

= 0. (19)

The results given in (19) are valid both in SUSY and non-
SUSY GUTs like SO(10), SO(18), and E6 etc. as long as
ε′ = ε′′ as in (14). This suggests an important aspect of
the model: that in SO(10) with D-parity broken at the
GUT scale, the GUT scale and the proton lifetime are
unaffected due to gravitational corrections through the
five-dimensional operator.

3.2 Gravitational correction on the intermediate scale

We have examined the effect of the gravitational correc-
tion on the intermediate scale originating from the five-
dimensional operator given in (13) in different models
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characterized by (n16, n126) = (0,1), (1,0), (1,1), (2,0),
(0,2), (2,1), (1,2), (0,3) and (3,0). The one-loop coefficient
A, A′, B, B′ and numerical results obtained in different
cases are shown in Table 1. By varying the parameter η
within the range −10 to +10, we obtain an intermediate
scale MI between 1014 to 1016 GeV. The maximal effects
on MI are found to occur in the minimal model with the
210, 126 ⊕ 126 and 10 representations where R-parity is
automatically conserved, and we obtain the lowest possi-
ble value to be MI � 1014 GeV.

4 Threshold effects

So far we have noted that the impact of gravitational cor-
rections on the intermediate scale MI could bring it down
to 1014 GeV whereas the unification scale remains unaf-
fected. The possibility of MI � 1010–1012 GeV with b–
τ Yukawa unification at MI has been addressed in [13,
14] but with a number of additional Higgs scalars having
masses near MI, even though they do not contribute to
the spontaneous symmetry breaking. But we demonstrate
here that when threshold effects are taken into account,
the scale MI fits into the desired range of values even
if gravitational corrections are ignored and there are no
additional scalar degrees of freedom (and superpartners)
near the intermediate scale. We also note vanishing correc-
tions on the unification mass (MU) due to intermediate-
scale threshold effects.

From the analytic formulas, the threshold corrections
for the mass scales are

∆ ln
MI

MZ
=

(A′J∆ − AK∆)
(AB′ − A′B)

, (20)

∆ ln
MU

MZ
=

(BK∆ − B′J∆)
(AB′ − A′B)

. (21)

We assume the extended survival hypothesis to operate
with the consequence that all scalar components of an
SO(10) representation which do not contribute to sponta-
neous symmetry breaking are superheavy. Only lighter de-
grees of freedom are those G2213-components in 126⊕ 126
or 16 ⊕ 16 which contribute to spontaneous symmetry
breaking at MI. Similarly the lightest scalar components
with masses near MZ are up and down type doublets origi-
nating from 10 ⊂ SO(10). The coloured triplets in 10 have
masses near the GUT scale. We compute threshold effects
on MI and MU using two different methods which have
been adopted in the current literature.

Now we refer to Sect. 4.1. Effective mass parameters
and effective SUSY threshold have been introduced by
Carena, Pokorski and Wagner [29] which have also been
exploited in studying threshold effects in minimal SUSY
GUTs [22]. Similarly SUSY SU(5) GUT-threshold effects
have also been investigated by Langacker and Polonsky
[22] by introducing another set of effective mass param-
eters near the GUT scale. For the present analysis we
utilize the same set of effective mass parameters at the
SUSY scale as in [22] but use two new sets of effective
mass parameters at MI and MU. Although the effective

Table 2. The heavy Higgs content of the SO(10) model with
G2213 intermediate symmetry. The G213 submultiplets acquire
masses close to MI when G2213 is broken

SO(10) representation G213 multiplet b′
2L, b′

1Y , b′
3C

16 (1, 0, 1) (0, 0, 0)

16 (1, −1, 1)
(
0, 3

5 , 0
)

16 (1, 0, 1) (0, 0, 0)

16 (1, −1, 1)
(
0, 3

5 , 0
)

16
[
16

]
(1, 0, 1) (0, 0, 0)

(1, 1, 1)[(1, −1, 1)]
(
0, 3

5 , 0
)

126 (1, 2, 1)
(
0, 12

5 , 0
)

(1, 0, 1) (0, 0, 0)

126 (1, −1, 1)
(
0, 3

5 , 0
)

(1, −2, 1)
(
0, 12

5 , 0
)

mass parameters corresponding to the SUSY threshold has
been determined approximately using experimental mea-
surements or well-known estimations of the actual masses,
such determinations for the effective mass parameters at
higher thresholds have not been carried out due to lack
of experimental data or adequate estimations of the su-
perheavy masses. In view of this we adopt a procedure
similar to that outlined in [22] and assume these effective
mass parameters to be a few times heavier or lighter than
the corresponding mass scales.

Next we refer to Sect. 4.2. Without introducing effec-
tive mass parameters, threshold effects have also been
computed conventionally by assigning specific and plau-
sible values of masses to the superheavy scalar compo-
nents in non-SUSY GUTs as well as SUSY theories [30–
34]. This method will be adopted below in a separate anal-
ysis. Following a result due to Shifman, masses used for
the estimation of threshold effects have been assumed to
be bare masses as the wave function renormalization has
been shown to get cancelled by two-loop effects [35].

In both these cases we find interesting solutions even
when the masses are assigned their expected values and
are taken to be a few times heavier or lighter than the
corresponding scales.

4.1 Threshold effects with effective mass parameters

Including threshold corrections, we have investigated three
models corresponding to (n16, n126) = (1, 0), (2, 0), (0, 1)
with 45 ⊕ 54, for SO(10) breaking and the other three
models corresponding to (n16, n126) = (1, 0), (2, 0), (0,
1) with 210. The superheavy components in these models
having masses near MI and MU are shown in Tables 2
and 3, respectively. It is clear that threshold effects on
MU and MI can be estimated once M ′

i(i = 1Y, 2L, 3C)
and M ′′

i (i = 2L, 2R, BL, 3C) as defined in (22)–(24) below
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Table 3. Same as Table 2, but here the G2213 submultiplets
acquire masses close to MU when SO(10) is broken

SO(10) representation G2213 submultiplet b′′
2L, b′′

2R, b′′
BL, b′′

3C

210
(
2, 2, ± 1

3 , 6
)

(6, 6, 4, 10)
(
2, 2, ± 1

3 , 3
)

(3, 3, 2, 2)
(2, 2, ±1, 1) (1, 1, 6, 0)
(
3, 1, ± 2

3 , 3
) (

6, 0, 6, 3
2

)

(
1, 3, ± 2

3 , 3
) (

0, 6, 6, 3
2

)

(3, 1, 0, 8) (16, 0, 0, 9)
(1, 3, 0, 8) (0, 16, 0, 9)
(3, 1, 0, 1) (2, 0, 0, 0)
(1, 3, 0, 1) (0, 2, 0, 0)
(1, 1, 0, 8) (0, 0, 0, 3)

45 (3, 1, 0, 1) (2, 0, 0, 0)
(1, 3, 0, 1) (0, 2, 0, 0)
(1, 1, 0, 8) (0, 0, 0, 3)

54 (3, 3, 0, 1) (6, 6, 0, 0)
(
1, 1, ± 2

3 , 6
) (

0, 0, 4, 5
2

)

(1, 1, 0, 8) (0, 0, 0, 3)
(
2, 2, ± 1

3 , 3
)

(3, 3, 2, 2)

16
[
16

] (
2, 1, − 1

2 , 1
) [(

2, 1, 1
2 , 1

)] ( 1
2 , 0, 3

4 , 0
)

(
2, 1, 1

6 , 3
) [(

2, 1, − 1
6 , 3

)] ( 3
2 , 0, 1

4 , 1
)

(
1, 2, − 1

6 , 3
) [(

1, 2, 1
6 , 3

)] (
0, 3

2 , 1
4 , 1

)

126
[
126

] (
1, 3, − 1

3 , 6
) [(

1, 3, 1
3 , 6

)] (
0, 12, 3, 15

2

)

(
1, 3, 1

3 , 3
) [(

1, 3, − 1
3 , 3

)] (
0, 6, 3

2 , 3
2

)

(
3, 1, 1

3 , 6
) [(

3, 1, − 1
3 , 6

)] (
12, 0, 3, 15

2

)

(
3, 1, − 1

3 , 3
) [(

3, 1, 1
3 , 3

)] (
6, 0, 3

2 , 3
2

)

(3, 1, −1, 1)[(3, 1, 1, 1)]
(
2, 0, 9

2 , 0
)

(
2, 2, 2

3 , 3
) [(

2, 2, 1, − 2
3 , 3

)]
(3, 3, 8, 2)

(
2, 2, − 2

3 , 3
) [(

2, 2, 2
3 , 3

)]
(3, 3, 8, 2)

(2, 2, 0, 8)[(2, 2, 0, 8)] (8, 8, 0, 12)
(2, 2, 0, 1)[(2, 2, 0, 1)] (1, 1, 0, 0)

(
1, 1, − 1

3 , 3
) [(

1, 1, 1
3 , 3

)] (
0, 0, 1

2 , 1
2

)

(
1, 1, 1

3 , 3
) [(

1, 1, − 1
3 , 3

)] (
0, 0, 1

2 , 1
2

)

10
(
1, 1, ± 1

3 , 3
) (

0, 0, 1
2 , 1

2

)

are known. In any model the superheavy masses near any
particular symmetry breaking scale can be parametrized
in terms of the corresponding effective mass parameters
[22,29]. In the present model there are three such relations
corresponding to the three symmetry breaking scales i.e.,
µ = MSUSY = MZ , µ = MI and µ = MU,

∆Z
i =

∑
α

bα
i

2π
ln

Mα

MZ
=

bi

2π
ln

Mi

MZ
,

i = 1Y, 2L, 3C; µ = MZ ; (22)

∆I
i =

∑
α

b′α
i

2π
ln

M ′
α

MI
=

b′
i

2π
ln

M ′
i

MI
,

i = 1Y, 2L, 3C; µ = MI; (23)

∆U
i =

∑
α

b′′α
i

2π
ln

M ′′
α

MU
=

b′′
i

2π
ln

M ′′
i

MU
,

i = 2L, 2R, BL, 3C; µ = MU; (24)

where α refers to the actual G213 submultiplet near µ =
MZ , MI or the G2213 submultiplet near µ = MU, and
Mα, M ′

α or M ′′
α refer to the actual component masses.

The coefficients b′
i =

∑
b
′(α)
i and b′′

i =
∑

b
′′(α)
i have been

defined in (22)–(24) following [22,29]. The numbers bα
i

refer to the one-loop coefficients of the multiplet α un-
der the gauge subgroup U(1)Y , SU(2)L, SU(2)R, SU(3)C ,
U(1)B−L etc. Using (9) and (20)–(24) we have obtained
contributions to threshold effects on the two mass scales,
∆ ln MI

MZ
and ∆ ln MU

MZ
, as shown in Table 4 in terms of

the effective mass parameters M ′
i(i = 1Y, 2L, 3C) and

M ′′
i (i = 2L, 2R, BL, 3C). The numerical entries in Table 4

denote threshold effects at MZ estimated using the effec-
tive mass parameters of [22].

Using one-loop coefficients from Tables 2 and 3 and the
effective mass parameters denoted as primes at the inter-
mediate scale and as double primes at the GUT scale, the
analytic expressions for the threshold corrections are pre-
sented in Table 4 where different models have also been
defined. A remarkable feature is that ∆ ln MU

MZ
has vanish-

ing corrections due to intermediate-scale threshold effects
as the corresponding expressions contain no term involv-
ing any of the parameters like M ′

2L, M ′
2R, M ′

BL or M ′
3C .

Further, the effective mass parameters M ′′
2R and M ′′

BL have
vanishing contributions to the threshold effects on the uni-
fication mass. Another notable feature is that corrections
due to M ′

2L and M ′
3C are absent in ∆ ln MI

MZ
. There is only

a small correction due to M ′
1Y .

Equation (22) has been utilized in [22] to compute only
one set of values of M1, M2, M3 in MSSM from the model
predictions on Mα. But, since such predictions are also
model dependent, several other assumed values of the ef-
fective mass parameters have been utilized for the com-
putation. At present no experimental or theoretical infor-
mation is available on the actual values of the superheavy
masses around MI and MU, although theoretically it is
natural to assume these masses to spread around the cor-
responding scales by a factor bounded by 1

10 and 10. In the
present case, in the absence of actual values of component
masses in the model, we make quite plausible and rea-
sonable assumptions on M ′

i and M ′′
i for the computation.

In our analysis the effective mass parameters M ′
i or M ′′

i
are taken to vary between 1

5–5 times the relevant scale of
symmetry breaking, i.e., MI or MU. Numerical solutions
to different allowed values of the mass scales correspond-
ing to different choices of the effective mass parameters
are presented in Table 5.

Certain important features of these solutions are note-
worthy. The minimal model I with one set of 210, 16⊕ 16,
and 10 permits an intermediate scale in the interesting
range of 103–1013 GeV for reasonable choices of the ef-
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Table 4. Threshold effects on mass scales in different SUSY SO(10) models using
effective mass parameters

Model Representation content ∆ ln MI
MZ

∆ ln MU
MZ

I 210, 16 ⊕ 16, 10 53
4 ln M′′

2R
MU

+ 103
12 ln M′′

BL
MU

27
2 ln M′′

2L
MU

− 14 ln M′′
3C

MU

− 81
2 ln M′′

2L
MU

+ 56
3 ln M′′

3C
MU

+0.117

−1.33

II 210, 2(16 ⊕ 16), 10 28 ln M′′
2R

MU
+ 18 ln M′′

BL
MU

29
2 ln M′′

2L
MU

− 15 ln M′′
3C

MU

− 203
2 ln M′′

2L
MU

+ 55 ln M′′
3C

MU
+0.122

+ 3
2 ln M′

1Y
MI

− 2.78

III 210, 126 ⊕ 126, 10 −29 ln M′′
2R

MU
− 55

3 ln M′′
BL

MU
30 ln M′′

2L
MU

− 121
4 ln M′′

3C
MU

+150 ln M′′
2L

MU
− 305

3 ln M′′
3C

MU
+0.105

− 9
4 ln M′

1Y
MI

− 1.56

IV 45, 54, 16 ⊕ 16, 10 5
4 ln M′′

2R
MU

+ 7
12 ln M′′

BL
MU

3
2 ln M′′

2L
MU

− 2 ln M′′
3C

MU

− 9
2 ln M′′

2L
MU

+ 8
3 ln M′′

3C
MU

+0.117

−1.33

V 45, 54, 2(16 ⊕ 16), 10 4 ln M′′
2R

MU
+ 2 ln M′′

BL
MU

5
2 ln M′′

2L
MU

− 3 ln M′′
3C

MU

− 35
2 ln M′′

2L
MU

+ 11 ln M′′
3C

MU
+0.122

+ 3
2 ln M′

1Y
MI

− 2.78

VI 45, 54, 126 ⊕ 126, 10 −17 ln M′′
2R

MU
− 31

3 ln M′′
BL

MU
18 ln M′′

2L
MU

− 37
2 ln M′′

3C
MU

+90 ln M′′
2L

MU
− 185

3 ln M′′
3C

MU
+0.105

− 9
4 ln M′

1Y
MI

− 1.56

fective mass parameters having string scale unification
MU � (5 − 6) × 1017 GeV. Also the SO(10) model with
210, 126 ⊕ 126 and 10 allows MI � 5.3 × 1011 GeV with
high unification mass close to the string scale, MU �
5.6 × 1017 GeV. We also note that the intermediate-scale
solution with MI � 1011–1013 GeV is maintained irrespec-
tive of the fact whether a 210 or a 45⊕54 or even a 45⊕210
is used for the GUT-scale symmetry breaking.

Although solutions with intermediate scale MI � 1011–
1013 GeV are also possible due to threshold effects with
superheavy masses as shown in Sect. 4.2, a special and no-
table feature with effective mass parameters is the possi-
bility of low-mass right-handed gauge bosons correspond-
ing to MI � 1–10 TeV in all the six models, minimal or
non-minimal. These solutions are also indicated in Table 5.
Such low-mass right-handed gauge bosons might be tested
through experimentally detectable V + A currents in the
future [6].

4.2 Threshold effects with superheavy masses

In this subsection, instead of using effective mass parame-
ters, we estimate threshold effects with reasonable choices

of the values of the masses of the superheavy compo-
nents of Higgs scalars and their superpartners in three
models corresponding to (n16, n126) = (1, 0), (2, 0), (0, 1)
with 45 ⊕ 54, and three other models corresponding to
(n16, n126) = (1, 0), (2, 0), (0, 1) with 210.

The expression for the threshold effect in terms of ac-
tual superheavy component masses M ′

α which have values
near MI is given by (23),

∆I
i =

∑
α

b′α
i

2π
ln

M ′
α

MI
, i = 1Y, 2L, 3C. (25)

The superheavy components α contained in different mod-
els which have masses near MI are shown in Table 2. Sim-
ilarly, the threshold effect at µ = MU is given by (24),

∆U
i =

∑
α

b′′α
i

2π
ln

M ′′
α

MU
, i = 2L, 2R, BL, 3C. (26)

The superheavy components α contained in different mod-
els which have masses near MU are given in Table 3. While
computing threshold effects, we have assumed all the mul-
tiplets belonging to an SO(10) representation “H” to have
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Table 5. Predictions on mass scales MI and MU including the threshold effect with effective mass
parameters

Model Two-loop (GeV) M ′
1Y M ′′

2L M ′′
2R M ′′

BL M ′′
3C MI (GeV) MU (GeV)

I MI = 1016.9 – 4MU 3MU 3MU 2.95MU 1.36 × 1011 5.2 × 1017

MU = 1016.11 – 5MU 3.5MU 3.5MU MU 2 × 1011 1.5 × 1017

– 3MU MU MU 2.2MU 1.6 × 103 6.5 × 1017

II MI = 1017.6 MI 3MU 4MU 2MU 2.5MU 1.0 × 1011 1.3 × 1017

MU = 1016.12 MI 3MU 3.3MU 3.3MU 2.27MU 2.78 × 1011 5.58 × 1017

1
3MI 4MU 5MU 2MU 3MU 1.3 × 103 5.55 × 1017

III MI = 1015.2 MI MU MU 2MU MU 1.11 × 109 1.46 × 1016

MU = 1016.11 3.5MI 2.27MU 3.5MU 3.5MU 2MU 5.3 × 1011 5.5 × 1017

MI MU MU 5MU MU 1.2 × 103 1.46 × 1016

IV MI = 1016.9 – 2MU MU MU MU 1.84 × 1012 3.34 × 1017

MU = 1016.11 – 2MU MU MU
1

1.5MU 1.23 × 1011 2.53 × 1018

– 3MU
1
5MU

1
5MU

1
2MU 1.2 × 103 6.6 × 1019

V MI = 1017.6 MI MU
1

1.5MU 5MU
1
2MU 1.77 × 1012 9.94 × 1017

MU = 1016.12 MI MU
1

1.2MU
1
5MU MU 2.84 × 1011 1.48 × 1016

1
5MI 2MU MU MU MU 6.3 × 103 6.7 × 1017

VI MI = 1015.2 5MI
1
2MU MU

1
5MU MU 1.0 × 1014 6.75 × 1017

MU = 1016.11 MI MU
1

1.2MU 3MU MU 4 × 1011 1.46 × 1016

5MI MU
1

1.1MU 5MU 1.1MU 3.7 × 103 1.87 × 1015

the same degenerate mass MH . For example, all the su-
perheavy components in 45 given in Table 3 near µ = MU
have been subjected to the following degeneracy condition:

M ′′(3, 1, 0, 1) = M ′′(1, 3, 0, 1) = M ′′(1, 1, 0, 8) = M45.

Similarly for 210, 54, 16 ⊕ 16, 126 ⊕ 126 and 10

M ′′
(

2, 2,±1
3
, 6

)
= M ′′

(
2, 2,±1

3
, 3

)
= ... = M210,

M ′′(3, 3, 0, 1) = M ′′
(

1, 1,±2
3
, 6

)
= ... = M54,

M ′′
(

2, 1,−1
2
, 1

)
= M ′′

(
2, 1,

1
6
, 3

)
= ... = M16,

M ′′
(

1, 3,−1
3
, 6

)
= M ′′

(
1, 3,

1
3
, 3

)
= ... = M126,

M ′′
(

1, 1,±1
3
, 3

)
= M10.

All the heavy masses near µ = MI are assumed to have the
same mass M ′. We have obtained contributions to thresh-
old effects on the two mass scales ∆ ln MI

MZ
and ∆ ln MU

MZ

as shown in Table 4, in terms of superheavy masses. The
last term (with the numerical entries) denotes threshold
contributions at µ = MZ . From Table 6, it can be seen
that the threshold contributions due to the superheavy
masses M16 or M126 to ∆ ln MU

MZ
are absent for all the

models and the threshold contribution due to the repre-
sentation 54 cancels out from models IV, V and VI. These
cancellations are understood by a theorem by Mohapa-
tra [36]. As before the masses are allowed to vary be-
tween 1

5 and 5 times the scale of the relevant symmetry
breaking, i.e. MI or MU. Numerical solutions to different
allowed values of mass scales corresponding to different
choices of superheavy masses are presented in Table 7. In
Table 7, for models I, IV (II, V) we have the interme-
diate scale MI � 1014(1013) GeV with unification scale
MU � 1016 GeV for a reasonable choice of the superheavy
masses. In case of models III, VI the intermediate scale can
be as low as 1010 GeV with unification scale 6.3×1015 GeV.

5 Summary and conclusion

While investigating the possibility of G2213 intermediate
gauge symmetry in SUSY SO(10), we have considered a
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Table 6. Threshold effects on the mass scales in different SUSY SO(10) models using
superheavy masses

MODEL Representation content ∆ ln MI
MZ

∆ ln MU
MZ

I 210, 16 ⊕ 16, 10 − 1
2 ln M16

MU
+ 1

2 ln M10
MU

− 1
4 ln M210

MU
− 1

4 ln M10
MU

−1.33 +0.117

II 210, 2(16 ⊕ 16), 10 1
4 ln M210

MU
− 2 ln M16

MU
− 1

4 ln M210
MU

− 1
4 ln M10

MU

+ 5
4 ln M10

MU
+ ln M′

MI
+0.122

−2.78

III 210, 126 ⊕ 126, 10 − 1
2 ln M210

MU
+ 5

2 ln M126
MU

− 1
4 ln M210

MU
− 1

4 ln M10
MU

− ln M10
MU

− 2 ln M′
MI

+0.105

−1.56

IV 45, 54, 16 ⊕ 16, 10 − 1
2 ln M16

MU
+ 1

2 ln M10
MU

− 1
4 ln M45

MU
− 1

4 ln M10
MU

−1.33 +0.117

V 45, 54, 2(16 ⊕ 16), 10 1
4 ln M45

MU
− 2 ln M16

MU
− 1

4 ln M45
MU

− 1
4 ln M10

MU

+ 5
4 ln M10

MU
+ ln M′

MI
+0.122

−2.78

VI 45, 54, 126 ⊕ 126, 10 − 1
2 ln M45

MU
− 5

2 ln M126
MU

− 1
4 ln M45

MU
− 1

4 ln M10
MU

− ln M10
MU

− 2 ln M′
MI

+0.105

−1.56

Table 7. Predictions on mass scales MI and MU including the threshold effect with superheavy masses

Model Two-loop (GeV) M ′ M210 or M45 M16 M126 M10 MI (GeV) MU (GeV)

I,IV MI = 1016.9 – 1
5MU

1
5MU – 1

5MU 2.1 × 1016 3.2 × 1016

MU = 1016.11 – 1
5MU 5MU – 1

5MU 9.7 × 1014 3.2 × 1016

II,V MI = 1017.6 1
5MI

1
5MU

1
5MU – 1

5MU 1.1 × 1016 3.3 × 1016

MU = 1016.12 1
5MI

1
5MU 5MU – 1

5MU 1.7 × 1013 3.3 × 1016

III,VI MI = 1015.2 1
5MI 5MU – 1

5MU 5MU 2.3 × 1010 6.3 × 1015

MU = 1016.11 1
5MI 5MU – 1

5MU MU 1.1 × 1011 9.5 × 1015

number of models. At the two-loop level, we have noted
that except for the non-minimal models with 3(16 ⊕ 16),
210, 10 [10] and those of [13,14,16] the RGEs in the min-
imal models do not permit the G2213 intermediate break-
ing scale MI to be substantially lower than MU when both
gravitational and threshold effects are ignored. Including
gravitational corrections in the minimal model, we observe
that the prediction on the unification mass remains unaf-
fected by such Planck-scale-induced gravitational effects
whereas the intermediate scale can be lowered by at most
two orders of magnitude through such corrections.

Including threshold corrections, we have considered
various minimal and non-minimal models and obtained
MI � 1010–1013 GeV with high unification scale using
plausible values of the effective mass parameters but with-
out using an additional number of Higgs scalars at MI
(models I, III, IV and VI with n126 = 1 or n16 = 1).
Our choices of the effective mass parameters are similar to
those used in earlier investigations [22,29] and the choices
of superheavy masses near the thresholds are similar to
those used in earlier analyses [30–34]. An important fea-
ture of the analytic result is that the GUT scale is unaf-
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fected by the spreading of masses near the intermediate
scale although the intermediate scale is itself changed sig-
nificantly by the superheavy masses near the GUT scale.
Thus the proton lifetime predictions in the model for the
p → e+π0 mode are unchanged by gravitational or inter-
mediate-scale threshold corrections. Another important
aspect of this analysis is that even if the spreading of the
masses near the two thresholds are only a few times heav-
ier or lighter than the corresponding scales, the models
result in MI � 1011–1013 GeV either with effective mass
parameters or with superheavy masses. We further observe
that low-mass right-handed gauge bosons in the range
1–10 TeV are permitted in the model only when threshold
effects are computed with effective mass parameters. All
relevant superheavy masses contributing to threshold ef-
fects have been assumed to be bare masses as their wave
function renormalization has been shown to be cancelled
out by two-loop effects [35].

It may be noted that while the use of 126⊕126 permits
the implementation of the conventional see-saw mecha-
nism for neutrino masses with R-parity conservation, it is
possible to use a generalized mechanism [37,38] with the
choice 16 ⊕ 16, such that one can get a see-saw-like for-
mula for light neutrino masses. In the latter case R-parity
is violated and one needs to impose additional discrete
symmetries to maintain the stability of the proton. We
thus conclude that G2213(g2L �= g2R) with minimal choice
of Higgs scalars is allowed as an intermediate gauge sym-
metry in the SUSY SO(10) model. The right-handed Ma-
jorana neutrinos associated with the intermediate scales
obtained in this analysis are compatible with the observed
indications for light Majorana neutrino masses through
the see-saw mechanism [5,8,9].

Recently interesting investigations have been made in
SUSY left–right gauge models while embedding G2213 in
SUSY SO(10) as an intermediate gauge group in the pres-
ence of higher-dimensional operators [39]. It would be even
more interesting to study the impact of threshold effects
in such models where certain light degrees of freedom are
naturally allowed and R-parity conservation is guaran-
teed.
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